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Abstract
We describe an ongoing effort to build a system of type
classes that support fast, accurate, flexible and generic nu-
meric programming in Scala. This work combines Scala’s
support for user-directed type specialization with previous
work on numeric type classes. In principle, these allow one
to create generic numeric algorithms without sacrificing the
speed of a direct implementation. In practice, these perfor-
mance gains make very specific demands of both the lan-
guage and the user.

This paper is a case study: we will explain the problems
faced, discuss our strategies, and provide benchmarking re-
sults. We will also discuss ways in which Scala could be
improved to more easily accommodate this kind of work.
Finally, we will present a simple compiler plug-in that can
be used to increase performance in many cases.

Categories and Subject Descriptors D [3]: 3

General Terms Experimentation, Performance

Keywords scala, specialization, numeric, generic, type
class

1. INTRODUCTION
This paper concerns an effort over the last year to create a
flexible, powerful, and high-performance implementation of
the numeric type classes. The work was inspired by an email
from Andreas Flierl to the Scala mailing list [4], and relies
on the specialization support introduced in Scala 2.8 [3].

There are two implementations being discussed. The first
was an R&D effort undertaken by Erik Osheim with the
support of Azavea [1]. This project culminated in November
2011 with a GitHub release along with a series of blog posts
and some profiling results [13]. The second project, Spire
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[14], is a general-purpose numerics library by Erik Osheim
and Tom Switzer. Started as a set of proposed improvements
to Scala’s built-in numerics, Spire has evolved into a stand-
alone library supporting new number types, a full type class
hierarchy, and other functions.

Much of the underlying specialization work from the
R&D project has been ported over to Spire, but some parts
are only available in the original project (e.g. the compiler
plug-in). Spire’s number types and design philosophy have
informed the design of its type classes, whereas the earlier
project stayed closer to the design found in scala.math.

2. BACKGROUND
2.1 Motivating Examples
Programming is often an exercise in abstraction. Developers
value principles like “DRY” (“Don’t repeat yourself”) as
well as design patterns like those described by the Gang of
Four [5].

Generic numeric programming refers to implementations
of algorithms and data structures that can be used with dif-
ferent underlying numeric types. One example of this is the
sum method provided by many of Scala’s collections, which
adds the elements of the collection together and returns the
total. Another example would be a matrix implementation
that could be used with any numeric type (e.g. Int, Double
or BigDecimal):

For example, suppose the distance formula is imple-
mented as follows:

def hypot(x:Int , y:Int):Int = {

val x2 = math.pow(x, 2)

val y2 = math.pow(y, 2)

math.sqrt(x2 + y2). toInt

}

This implementation is not very flexible: we’d need to
create overloads to support any other numeric types we re-
quire (e.g. Long). Defining things in terms of Double seems
to offer a way out, but it’s not hard to find number types
which Double can’t accommodate: BigDecimal comes to
mind. If we introduce a new number type (e.g. complex num-
bers), it’s clear that this kind of overloading is not feasible in
general.



Numeric type classes provide a more general solution to
this problem. This paper will discuss the design of numeric
type classes, their specific encoding in Scala, and attempts to
mitigate the performance impact of writing generic numeric
code.

2.2 Primitive Types and Reference Types
Java (as well as many other languages) distinguishes prim-
itive types like int from reference types which extend
java.lang.Object. When primitive types are passed as
parameters or held in local variables, the values are stored di-
rectly in stack frames. Conversely, values of reference types
refer to heap-allocated objects managed by the garbage col-
lector. Objects also provide more flexibility than primitive
types and can be used with Java’s generics.

However, allocating objects is usually much more expen-
sive than allocating primitive values, both in terms of mem-
ory overhead and also in terms of the performance of the
garbage collector. In some cases the JVM will use escape
analysis to allocate objects on the stack instead of the heap,
but even these allocations have a cost [7].

2.3 Boxing and Unboxing
Because developers often want to abstract across primitive
types Java provides primitive wrapper classes. For instance,
a java.lang.Integer can be used to wrap an int value,
a process is known as “boxing”. When the int value is
required, it can be retrieve via a call to intValue which is
known as “unboxing”.

// box two int values into Pair <Integer >

Integer a = new Integer (3);

Integer b = new Integer (4);

Pair <Integer > pair = new Pair(a, b);

// unbox the second value

int x = pair.second.intValue ();

Boxing allows Java developers to abstract across primi-
tive types, albeit with a cost both in performance (e.g. ex-
tra object allocations) and in expressiveness (calls to new

Integer() and intValue). Scala does not have this dis-
tinction at the language level:

val a: Int = 3

val b: Int = 4

val pair: Pair[Int] = Pair(a, b)

val x: Int = pair._2

Scala unifies each primitive type (e.g. int in Java) with
its boxed equivalent (java.lang.Integer) into a single
type (Int). Unlike Java, where type parameters must be
bound to reference types (Section 4.4 of [6]), generic meth-
ods in Scala may contain type parameters bound to prim-
itive types. Java requires developers to be clear about the
difference between the boxed and unboxed representation,
whereas Scala doesn’t require developers to worry about
these distinctions. [10]

Despite these improvements, using AnyVal types in
generic Scala functions still incurs the same performance
penalty, albeit less explicitly. This is because the JVM re-
quires all generic classes and methods to be parameterized
on a reference type (section 4.3.4 of [9]). Scala uses the
boxed representation when binding a primitive type to a type
parameter.

2.4 Generic Math Operations in Scala
Number types in Scala lack any superclass or interface ex-
posing arithmetic operations. This arrangement is inherited
from Java but also reflects in the fact that primitive math
operations are not implemented as methods in the JVM.
Whatever the reason, types like Int and Double do not of-
fer methods substantially different than the equivalent Java
operations on primitives. Scala also offers functions like
pow(Double, Double) in the scala.math package, which
provides similar functionality to java.lang.Math.

Before 2.8, Scala did not provide any mechanism for
generic numeric programming. In some cases Double acted
as a stand-in, since the other numeric AnyVal types have
implicit conversions to Double which mirror the coercions
Java will perform. This can be useful but creates problems:

// inferred type of a is "Double"

val a = math.pow(5L, 3L)

val b = Long.MaxValue - 1

// imprecision causes failed assertion

assert(b == math.pow(b, 1). toLong)

While there are reasons why one might choose not to
provide an implementation of pow for Long (namely that it
would have O(n) time complexity as opposed to O(1) for
Double) this example shows why Double is inappropriate
as a generic numeric type.

This problem is even worse in the case of BigInt and
BigDecimalwhose unlimited ranges exceed Double.MaxValue.
Instead of trying to find a single particular numeric represen-
tation, we can solve this problem using numeric type classes.

3. NUMERIC TYPE CLASSES
Type classes are a construction introduced by the Haskell
programming language [15] to support ad-hoc polymor-
phism [18]. A type class can be loosely defined as a generic
specification together with a set of types who can pro-
vide implementations of that specification parameterized on
themselves. Unlike the classic inheritance model, members
are not required to implement an interface via subtyping,
but rather, provide instances which satisfy the type class’
specification. 1

Member types are linked to type classes via instances of
the type class, parameterized on the member type. For in-

1 General information about type classes is available at http://www.

haskell.org/tutorial/classes.html.



stance, a type class called Integral might have an imple-
mentation in terms of Int. This means that there exists an
instance of Integral[Int] containing the implementation
of Integral in terms of Int.

In Scala, the type class pattern can be encoded using im-
plicit values, implicit parameters and implicit conversions
[12]. Particular instances of the type class are found via im-
plicit search, passed to a methods as implicit parameters, and
used to enrich generic types with the type class’ supported
operations.

One of the advantages of this pattern is that it can be used
with types that don’t share a common interface (either a su-
pertrait or a superclass). The AnyVal types present just such
a situation: they do not share a trait or superclass that pro-
vides useful functionality, although in practice they do share
many useful properties. In principle type class instances can
also be implemented by users to support types of which the
type class itself has no knowledge.

3.1 Existing Type Classes in the Scala Library
The two most notable examples in the library are Ordering,
which generalizes comparisons, and Integral, Fractional,
and Numeric which generalize mathematical operations.
Here’s an example of a method written using Ordering:

import scala.math.Ordering._

import scala.math.Ordering.Implicits._

// scala as written

def lessThan[A:Ordering ](x:A, y:A) = x < y

// with syntactic sugar removed

def lessThan[A](x:A, y:A)(ev:Ordering[A]) = {

x.<(y)

}

// after implicits are resolved

def lessThan[A](x:A, y:A)(ev:Ordering[A]) = {

ev.infixOrderingOps(x).<(y)

}

// with ev.infixOrderingOps inlined

def lessThan[A](x:A, y:A)(ev:Ordering[A]) = {

new ev.Ops(x).<(y)

}

Type classes like Ordering enable Scala to reuse a sin-
gle method implementation for many desired data type. This
keeps the size of the library low (in terms of lines of code),
and require less coupling between library interfaces and
user-defined types. For example, Scala’s collections imple-
ment sum, min and max in terms of Numeric and Ordering.

3.1.1 Performance Costs
Unfortunately these type classes do come with a perfor-
mance cost. Benchmarks conducted around Ordering sug-
gest that using a generic implementation with Long is 3.3-
12.8 times slower than a direct implementation that uses
Long directly (see Appendix C).

In fact, scala.util.Sorting#quickSort provides di-
rect implementations for Array[Int], Array[Float] and
Array[Double] precisely to avoid this kind of perfor-
mance penalty. When used with Array[Long] we find that
quickSort (using the Ordering-based implementation) is
4-6 times slower than the other direct implementations (as
shown in Appendix B).

3.1.2 Expressiveness
Not only do the generic methods result in worse perfor-
mance, but in many cases they don’t define all the opera-
tions on the generic type which users need. For instance,
scala.math.Numeric (which abstracts across all the nu-
meric types, like Int and Double) does not support divi-
sion. This means that many algorithms can’t be generalized
across integral and fractional types, even when the division
in question would be well-defined (see https://issues.

scala-lang.org/browse/SI-4658).
The Fractional type class (which generalizes types

like Float, Double and BigDecimal) does support di-
vision. Even so, it has many similar problems. For one,
Fractional doesn’t contain logarithms, exponentiation
or trigonometry functions. To use those one must con-
vert to Double (which will not work for all BigDecimal
values). In fact, there is no support for converting to (or
from) BigDecimal at all, which means that Fractional
is effectively limited to double precision. Worse, Numeric,
Fractional and Integral all extend Ordering, which
means they can’t be extended by users to include types like
complex numbers.

3.2 Goals and Strategy
Users have different ideas of what generic numeric support
should entail. Some users will want a type class which is
maximally flexible (supporting division, exponentiation, or-
dering, etc.) even when some number types may not fully
support the operation. This could mean that a type uses an
approximation (for instance, an integral type might imple-
ment / in terms of floor division) or that an operation is not
supported (for instance, a complex number might throw an
exception when used with <).

Other users will want to structure type classes alge-
braically, either to make guarantees related to precision or
to enforce greater type safety. Naturally, there is tension be-
tween performance, flexibility, and precision. Rather than
trying to find a single strategy to try to please all users of
Spire, we have chosen to support two different type class
approaches.

The first approach consists of the Numeric type class.
It supports all mathematical operations on all number types
with the possibility of loss of precision or runtime failures–
its goals are speed and flexibility. This corresponds to the
strategy taken in the original R&D project.

The second approach defines a tower of type classes, each
level offering more and more capabilities to a restricted set



of numeric types. Using these type classes an author can
precisely define the algebraic properties required of a type.
Its goals are speed and type safety (i.e. guarantees about a
type’s properties). The exact structure of these type classes
is discussed in Section 5.2.

Besides structuring the numeric type classes to gain flex-
ibility and support future numeric types, a goal of Spire is
also important to maintain performance on par with direct
implementations. If direct implementations are known to be
several orders of magnitude faster than generic, developers
will avoid supporting all number types (a situation we find
ourselves in today). The JVM is able to optimize much of the
type class indirection away, but to realize our performance
goals we will need to use specialization.

4. SPECIALIZATION
The main cause of the decline in performance is boxing:
when an AnyVal type is used as a type parameter it must be
used in the boxed form (since generic type parameters are
converted to Object at the JVM level). Fortunately, we can
often avoid this unnecessary boxing by using specialization,
a feature introduced to Scala in 2.8 to solve exactly these
kinds of problems [3].

Specialization allows us to create direct, “specialized”
versions of particular classes or methods. When a special-
ized variant is available, the compiler will prefer it to the
generic implementation. For example, if our previous exam-
ple was specialized on Int, the compiler would generate the
following prototypes:
// method as written

def lessThan[@spec(Int) A:Ordering ](a:A, b:A):

Boolean

// compiles to generic version

def lessThan(a:Object , b:Object , ev:Ordering ):

Boolean

// version specialized on Int , without boxing

def lessThan$mIc$sp(a:Int , b:Int , ev:Ordering ):

Boolean

4.1 Current Limitations of Specialization
Specialized type parameters necessarily increases the amount
of bytecode generated (by roughly 2-10 times per class, de-
pending upon how many types are specialized). This in-
crease becomes a combinatorial explosion when there are
multiple specialized type parameters (since each possible
combination generates a unique specialized implementa-
tion). Thus, there is an explicit trade-off between code size,
performance and features.

It’s important to remember that specialization currently
places restrictions on how inheritance can be used. Sub-
classes of a specialized parent class will inherit from (and
thus use) the parent’s generic implementation, even if a spe-
cialized version exists and would be preferred. Since ex-
tending a specialized trait does use the parent’s specialized

implementation, we prefer to use traits rather than abstract
classes. This restriction may change in future versions of
Scala.

Finally, there some cases where specialization doesn’t
perform as expected. For instance, specialized classes with
methods that introduce additional specialized type parame-
ters often do not avoid boxing. Here is a (simplified) exam-
ple:
import scala .{ specialized => sp}

object Baz {

def baz[@sp(Int) A, @sp(Int) B](a:A, b:B): String =

...

}

trait Foo[@sp(Int) A] {

val a:A

def bar[@sp(Int) B](b:B) = Baz.baz(a, b)

}

We would like for new Foo(3).bar(4) to generate calls
to Baz.baz$mIIc$sp (the specialized version of Baz.baz)
without any intermediate boxing. Cases where A or B are
not set to Int would generate calls to Baz.baz with two
instances of Object. While this example is somewhat con-
trived it will become more important in section 5.3 when we
discuss generic numeric conversions.

Here is a Scala-like representation of what the compiler
actually produces. For each trait, Scala produces an interface
and an abstract class with the implementation.
object Baz {

// generic version of "baz"

def baz(a:Object , b:Object ): String = ...

// specialized version of "baz"

def baz$mIIc$sp(a:Int , b:Int): String = ...

}

// generic Foo interface

interface Foo extends ScalaObject {

def a(): Object

def a$mcI$sp (): Int

def bar(b: Object ): String

def bar$mIc$sp(b: Int): String

}

// generic Foo implementation

abstract class Foo$class extends Object {

def a$mcI$sp($this:Foo) = unbox($this.a())

def bar($this:Foo , b:Object) = {

Util.baz($this.a(), b)

}

def bar$mIc$sp($this:Foo , b:Int) = {

Util.baz($this.a(), scala.Int.box(b))

}

}

// specialized Foo[Int] interface

interface Foo$mcI$sp extends Foo {

def a(): Int

}



// specialized Foo[Int] implementation

abstract class Foo$mcI$sp$class extends Object {}

Leaving aside the exact details of why this class structure
is generated, notice that both versions of bar which were
generated will result in boxing, since neither of them calls
baz$mIIc$sp. A similar thing happens when using special-
ization with inner and outer classes.

This is probably the biggest limitation of specialization:
the library author really has to dig in and understand what
code is being generated, since the interactions are often
murkier than they would appear. This will hopefully become
less of a concern as the feature matures.

4.2 Specialized Type Classes
Type class traits in Scala are perfectly amenable to special-
ization, keeping in mind the previous caveats. Unfortunately,
since the type classes in the standard library are not special-
ized, inter-operating with or extending these types negates
the advantages that specialization gains us. More generally,
we need to make sure we are using specialized classes and
methods from the call site all the way down to the direct type
class implementation.

Also, even without boxing primitive values, the type
enrichment mechanism does allocate a new object (e.g. a
NumericOps instances) every time an infix operator is used.
Escape analysis enables the JVM to allocate these objects
on the stack, but there is still a performance cost. The cost
is less severe than boxing but if the goal is parity with direct
implementations then it becomes a factor. This cost can be
dodged by calling Numeric[A]’s methods explicitly, but the
resulting syntactic noise is quite bad:
def clean[A:Numeric ](x:A, y:A) = x * x + y

def fast[A](x:A, y:A)( implicit ev:Numeric[A]) =

ev.plus(ev.times(x, x), y)

5. IMPLEMENTATION
With the previous points in mind, we must provide an inde-
pendent implementation of all the relevant type classes, from
equivalence relations and ordering up through the mathe-
matical operations, in order to receive the benefits of spe-
cialization. We will also structure our type classes to avoid
things like inner classes, anonymous classes and other con-
structions which interfere with specialization.

This section will discuss the design of Spire.

5.1 Numeric Type Class
The first strategy, the Numeric type class, is intended as
a general purpose “number abstraction” which supports all
the operations defined on primitives. Since operators like /

and % are defined on both Int and Double, Numeric defines
these operators, with the understanding that the meaning of
a / b is contextual on which Numeric[A] is being used.

Type members of Numeric are required to implement
a wide range of operators and to do the job as best they

can. This means that quotient and division will both be
defined in terms of Int#/ since integer types often can’t
represent the results of division. A complex number type
implementing Numeric would need to throw runtime errors
when comparison operators were used. And some operations
might overflow or result in a loss of precision. Numeric
makes a purposeful trade-off, sacrificing some numerical
soundness in exchange for flexibility.

5.2 Ring, EuclideanRing, Field Type Classes
The second strategy encompasses a family of type classes
which mirror the library’s current type classes, but attempts
to stay closer to the underlying algebras. The hierarchy con-
sists of:

• Eq: ===, =!= (typed equality)
• Order: Eq with <, >

• Ring: Eq with +, -, *, pow, abs

• EuclideanRing: Ring with quot, mod.
• Field: EuclideanRing with /.
• Integral: EuclideanRing with Order.
• Fractional: Field with Order.

The most basic of these is Ring which corresponds to
an algebraic ring with unity and is similar to Haskell’s Num.
Each additional type class extends (and builds on) the sup-
ported operations. Both ordered and unordered type classes
are available. Type members of these type classes are held to
a much stricter standard than with Numeric and fully sup-
port the interfaces in question.

While the overall approach is inspired by Haskell’s, there
are some important differences. For one, we have resisted
creating type classes specifically for floating-point imple-
mentations (Haskell defines Floating and RealFloat).
For another, we have allowed Field to inherit quotient and
remainder from EuclideanRing–there didn’t seem to be
any good reason to restrict those to be available only for
integral types. Finally, we have supported more operations
than Haskell does: Ring implements pow, and we support
trigonometry and nroot via their own type classes 2, rather
than baking them into Floating.

5.3 Conversions Between Types
Once one starts working with the previously defined type
classes, there are a few things that one quickly notices. One
is how many methods are defined only for Double. But
another is that using numeric constants (such as 42) in code
becomes quite cumbersome. For example:

// direct implementation in terms of Int

def add42(a:Int) = a + 42

// generic implementation

2 See the Trig and NRoot type classes in Spire.



def add42[A:Numeric ](a:A) = {

a + Numeric[A]. fromInt (42)

}

This is not a show-stopper but it does reduce the read-
ability of generic methods a bit. This gets worse as you find
yourself converting from your generic type to other types
and back again:
// direct implementation in terms of Int

def hypot(x:Int , y:Int):Int = {

val x2 = math.pow(x, 2)

val y2 = math.pow(y, 2)

math.sqrt(x2 + y2).toInt

}

// generic implementation

def hypot[A:Numeric ](x:A, y:A):A = {

val n = numeric

val x2 = x.pow(2)

val y2 = y.pow(2)

n.fromDouble(math.sqrt(n.toDouble(x2 + y2)))

}

One solution which was explored in [1] was to define a
set of implicit operators which would automatically convert
to the correct type. Here is a simplified example:
class Ops[@spec A:Numeric ](lhs:A) {

val n = implicitly[Numeric[A]]

def +[B:ConvertableFrom ](rhs:B) = {

n.minus(lhs , n.fromType(rhs))

}

}

// implementation using ConvertableFrom

def add42[A:Numeric ](a:A) = a + 42

Numeric[A]#fromType uses the ConvertableFrom[B]
instance to convert from B to A before performing the addi-
tion. This strategy allows us to mix literals, concrete types,
and generic types with generic numeric types.

There are some disadvantages to this approach. First, the
+ operator in particular will generate an ambiguous implicits
error because of the Predef.any2stringadd implicit. This
can be fixed by masking any2stringadd but this must be
done in every file that uses these implicits, which creates
boilerplate.

Worse, due to the specialization bug described earlier,
these methods introduce boxing even when specialized,
which degrades performance. This is in addition to the per-
formance penalty introduced by type enrichment. Without
recourse to compiler plug-ins or changes to specialization,
this approach is not feasible.

5.4 Type Class Extensibility
This type class hierarchy was designed to support user-
defined number types beyond those contained in Scala. Ex-
amples of this from [14] include Complex[A] and Rational.

The only place where the types are not fully extensible
are numeric conversions. The current strategy defines things
like toInt and fromInt in the interface itself, so future
number types (like a hypothetical Double128) would not

be supported by the same range of automatic conversions.
It’s possible that a more extensible strategy for managing
conversions without sacrificing performance could be found.

5.5 Optimizing Compiler Plug-in
One of the final features which drastically improved perfor-
mance was the creation of a compiler plug-in for remov-
ing intermediate object creation during type enrichment [1].
This plug-in transforms a valid Scala program using type
enrichment into one that calls methods explicitly on the im-
plicit type class instance. For example:

// using type enrichment

def foo[@spec A:Numeric ](a:A, b:B) = a + b

// what type enrichment expands to

def bar[@spec A](a:A, b:B)( implicit ev:Numeric[A]) = {

// allocates a NumericOps instance

new NumericOps(a).+(b)

}

// what the compiler plug -in creates

def baz[@spec A](a:A, b:B)( implicit ev:Numeric[A]) = {

ev.plus(a, b)

}

This allows us to benefit from the clean syntax of type
enrichment without having to allocate Ops instances every
time we use an operator. This is a key feature: otherwise
authors will be conflicted between writing clean, expressive
code and code that runs quickly.

The compiler plug-in used in [1] has a hard-coded map-
ping from enriched methods to methods on the implicit
Numeric[A] parameter. Future plug-ins should be able to
automatically do this mapping based on an annotation.

6. RESULTS
6.1 Performance Tests
The micro-benchmark results are extremely positive. With
the optimizing plug-in, most generic benchmarks run within
+/- 10% of their direct equivalents. More importantly, none
of generic benchmarks run more than 40% slower. By com-
parison, the “old” generic benchmarks tend to be about
300-700% slower, and in some cases are hundreds of times
slower than the comparable direct benchmark. Without the
optimizing compiler plug-in, writing generic code using in-
fix notation is somewhat slower, but is still 2-3x faster than
the “old” generic type classes.

When defining operations in terms of the ConvertableFrom
type class the infix notation gets even slower. Calling meth-
ods on the implicit parameter restores the performance in
some cases, but at the cost of clunky syntax, and other cases
are always slow due to the quirks of specialization. Without
a compiler plug-in or more precise specialization support
this strategy is not feasible.

Appendix B has a detailed table of results, as well as a
discussion of the benchmarking methodology.



6.2 Syntax Quirks
6.2.1 Promotion and precision
First, it’s worth noticing that methods implemented in terms
of numeric type classes have no way to compare the preci-
sion of a generic type parameter with other concrete types.
One could imagine the following:

// return Double or A, whichever is wider

def timesPi[A:Fractional ](a:A): Double or A = {

a * Double.PI

}

This is not practical for a few reasons. First, the return
type would have to be dynamically decided at run time,
complicating the type signature. Second, introducing new
type parameters only in the return type will require users to
be explicit about the return type in ways they won’t expect.
Thus, the generic parameter in question (A) is set for a
particular type, and can’t be promoted.

6.2.2 Operator mishaps
In addition to the previously-mentioned problems with the
any2stringadd implicit there are some other gotchas
around operators.

To support the distinction between floor division (de-
fined on EuclideanRing) and normal division (defined on
Field) we introduced /~ as a floor division operator, along
with /% as a divmod operator. It would have been possible to
use a method name like quot instead, but /~ has the advan-
tage of having correct precedence for division.

The pow operator presented problems as well. An opera-
tor with correct precedence would need to start with “˜” or
similar, and to associate correctly would need to end with
“:”. However, the prospect of using ~^: for exponentiation
was not attractive. Spire currently uses two exponentiation
operators: pow and **.

7. FUTURE WORK
This section will discuss future work to be explored in Spire.

7.1 Improving/specializing type classes
These results suggest that there is still much low-hanging
fruit related to optimizing the type class pattern with spe-
cialization. Even without using a compiler plug-in a dra-
matic speed up is currently possible, although some restruc-
turing is required to realize these potential gains. Libraries
like Scalaz [16] which make heavy use of type classes could
benefit from specialization.

The specialization feature itself could also be improved.
Many of the constraints around structuring type classes are
to work around the nuances of the current specialization
scheme. As specialization improves these guidelines will
change, or disappear.

7.2 Boxed number type
There are some features which do not interact well with a
type class approach. One example is detecting possible over-
flow and promoting the result type to avoid it (e.g. by pro-
moting an Int to a Long). Other examples include preci-
sion tracking, as well as supporting operations on mixed nu-
meric types intelligently (e.g. promoting the result of BigInt
+ Double to BigDecimal).

While it seems odd to suggest adding a boxed number
type after railing against the performance of boxing there are
some situations where performance is less important than
flexibility and correctness. Boxed numbers would enable
the implementation of a numeric tower like those found in
Scheme [8] and Python [19].

7.3 Optimizing compilation
Given, the excellent performance boost it provides, porting
the compiler plug-in to Spire is a high priority. Unfortunately
given the much larger number of methods and classes it will
be significant work to port the prototype’s current design.

The compiler plug-in could be generalized to support ar-
bitrary classes through a user-annotation, somewhat like the
current @inline annotation. The current design is brittle
due to hard-coding the operator names and implementation
details–a better version would find the wrapper class auto-
matically (potentially through an annotation), detect implicit
conversions to that class and inline the class’ method body
directly.

Finally, the kinds of optimizations the compiler plug-in
performs could easily be folded into the Scala compiler. This
would benefit not just specialized type classes but all uses of
enrichment. There has been some discussion around “inlined
implicit classes” and Josh Suereth’s implicit class SIP [17].
Value classes [11] and macros [2] may also be able to help
here.

A. PROJECT SOURCE CODE
This paper refers to source code taken from two different
projects to specialize the numeric type classes.

The source code for the original specialized numeric
R&D project is located at: https://github.com/azavea/
numeric. This project is historical and not actively devel-
oped.

The source code for Spire is located at: https://github.
com/non/spire. Spire is under development and moving
towards a first release.

B. PERFORMANCE TEST RESULTS
These are the performance numbers generated without us-
ing the compiler plug-in. The infix-adder tests as well as
increment-int 2-4 show degraded performance due to the
large number of intermediate objects created. The other tests
have been written in a style which avoids doing this, to
demonstrate the potential performance improvements.



Numeric Tests Results (ms)
test direct new old
infix-adder-int 1.3 7.9 14.1
infix-adder-long 1.9 8.0 21.0
infix-adder-float 3.5 5.9 16.3
infix-adder-double 3.6 4.5 16.8
array-total-int 1.5 1.4 21.3
array-total-long 1.9 1.1 20.9
array-total-float 3.6 2.8 17.0
array-total-double 3.6 3.3 17.8
find-max-int 2.1 3.4 17.8
find-max-long 2.1 1.6 19.1
find-max-float 6.0 4.4 18.5
find-max-double 5.0 5.4 16.8
insertion-sort-int 1.3 1.9 13.4
insertion-sort-long 0.9 1.3 14.8
insertion-sort-float 2.0 1.8 19.0
insertion-sort-double 1.1 0.8 13.4
increment-int1 0.1 0.1 13.4
increment-int2 0.1 3.5 11.9
increment-int3 0.1 4.5 12.5
increment-int4 0.1 5.4 11.9

The optimizing compiler plug-in was built against Scala
2.9.1. It used exactly the same benchmarking code (and the
same libraries) as the above tests; the only difference is the
additional scalac argument to enable the compiler plug-in.

Numeric With Optimizing Plug-in (ms)
test direct new old
infix-adder-int 1.1 1.6 14.9
infix-adder-long 1.5 1.5 20.9
infix-adder-float 3.9 4.1 19.5
infix-adder-double 3.0 3.4 18.5
array-total-int 0.9 1.5 21.1
array-total-long 2.0 1.8 21.0
array-total-float 3.6 2.8 18.4
array-total-double 3.3 3.6 20.5
find-max-int 4.0 4.0 17.5
find-max-long 1.8 1.9 19.3
find-max-float 4.9 5.8 16.9
find-max-double 5.5 3.8 16.5
insertion-sort-int 1.4 1.1 14.1
insertion-sort-long 1.4 0.9 15.1
insertion-sort-float 1.3 1.6 17.6
insertion-sort-double 1.9 2.0 14.6
increment-int1 0.1 0.1 11.9
increment-int2 0.1 0.4 12.1
increment-int3 0.1 0.1 12.3
increment-int4 0.1 0.3 12.9

The actual benchmarking code used in these tests is avail-
able at [1], in the “perf” subproject. In addition to the bench-

marks named in the paper, the project contains others which
were not used. Some were omitted because they were not
considered relevant (e.g. the tests using the library version
of quickSort/Ordering) others duplicated very similar tests
(and showed similar results).

All implementations use arrays and while loops to maxi-
mize the effect of the arithmetic operations themselves. The
“new” column corresponds to the specialized type classes,
the “old” to the type classes in the Scala library now, and
“direct” corresponds to an implementation written in terms
of the particular type in question.

These tests were all run in Scala-2.9.1 and Java 1.6.0 26
using the -optimize flag, on a Core i7 processor with 8G
of RAM.

C. OTHER BENCHMARKING RESULTS
These tests were run to compare direct implementations of
basic ordering methods with generic implementations using
scala.math.Ordering:

(time in ms) Generic Direct Slowdown
LessThan 46.00 13.87 3.32x
EqualTo 74.41 5.86 12.70x
FindMax 71.57 5.84 12.26x

The code for this benchmark is available at https://
github.com/non/ordering-benchmark.

Like the previous benchmarks, these tests were run in
Scala-2.9.1 and Java 1.6.0 26 using the -optimize flag, on
a Core i7 processor with 8G of RAM.
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